Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 175(4): 693-707, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197066

RESUMO

BACKGROUND AND PURPOSE: Autotaxin (ATX) is a secreted phospholipase which hydrolyses lysophosphatidylcholine to generate lysophosphatidic acid (LPA). The extracellular signalling molecule LPA exerts its biological actions through activation of six GPCRs expressed in various cell types including fibroblasts. Multiple preclinical studies using knockout animals, LPA receptor antagonists or ATX inhibitors have provided evidence for a potential role of the ATX/LPA axis in tissue fibrosis. Despite growing evidence for a correlation between ATX levels and the degree of fibrosis in chronic liver diseases, including viral hepatitis and hepatocellular carcinoma, the role of ATX in non-alcoholic steatohepatitis (NASH) remains unclear. EXPERIMENTAL APPROACH: The relevance of ATX in the pathogenesis of liver fibrosis was investigated by oral administration of Ex_31, a selective ATX inhibitor, in a 10 week model of carbon tetrachloride-induced liver injury and in a 14 week model of choline-deficient amino acid-defined diet-induced liver injury in rats. KEY RESULTS: Oral administration of Ex_31, a selective ATX inhibitor, at 15 mg·kg-1 twice daily in therapeutic intervention mode resulted in efficient ATX inhibition and more than 95% reduction in plasma LPA levels in both studies. Treatment with Ex_31 had no effect on biomarkers of liver function, inflammation, or fibrosis and did not result in histological improvements in diseased animals. CONCLUSIONS AND IMPLICATIONS: Our findings question the role of ATX in the pathogenesis of hepatic fibrosis and the potential of small molecule ATX inhibitors for the treatment of patients with NASH and advanced stages of liver fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Tetracloreto de Carbono/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Lisofosfolipídeos/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
2.
J Comput Aided Mol Des ; 25(7): 677-87, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21732248

RESUMO

The stress-activated kinase p38α was used to evaluate a fragment-based drug discovery approach using the BioFocus fragment library. Compounds were screened by surface plasmon resonance (SPR) on a Biacore(™) T100 against p38α and two selectivity targets. A sub-set of our library was the focus of detailed follow-up analyses that included hit confirmation, affinity determination on 24 confirmed, selective hits and competition assays of these hits with respect to a known ATP binding site inhibitor. In addition, functional activity against p38α was assessed in a biochemical assay using a mobility shift platform (LC3000, Caliper LifeSciences). A selection of fragments was also evaluated using fluorescence lifetime (FLEXYTE(™)) and microscale thermophoresis (Nanotemper) technologies. A good correlation between the data for the different assays was found. Crystal structures were solved for four of the small molecules complexed to p38α. Interestingly, as determined both by X-ray analysis and SPR competition experiments, three of the complexes involved the fragment at the ATP binding site, while the fourth compound bound in a distal site that may offer potential as a novel drug target site. A first round of optimization around the remotely bound fragment has led to the identification of a series of triazole-containing compounds. This approach could form the basis for developing novel and active p38α inhibitors. More broadly, it illustrates the power of combining a range of biophysical and biochemical techniques to the discovery of fragments that facilitate the development of novel modulators of kinase and other drug targets.


Assuntos
Descoberta de Drogas/métodos , Proteína Quinase 14 Ativada por Mitógeno/química , Bibliotecas de Moléculas Pequenas/química , Triazóis/química , Sítios de Ligação , Compostos Bicíclicos com Pontes/química , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , Conformação Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Ressonância de Plasmônio de Superfície/métodos , Difração de Raios X
3.
Acta Pharmacol Sin ; 30(7): 935-46, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19503102

RESUMO

AIM: To investigate the efficacy of the peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, AVE8134, in cellular and experimental models of cardiac dysfunction and heart failure. METHODS: In Sprague Dawley rats with permanent ligation of the left coronary artery (post-MI), AVE8134 was compared to the PPARgamma agonist rosiglitazone and in a second study to the ACE inhibitor ramipril. In DOCA-salt sensitive rats, efficacy of AVE8134 on cardiac hypertrophy and fibrosis was investigated. Finally, AVE8134 was administered to old spontaneously hypertensive rats (SHR) at a non-blood pressure lowering dose with survival as endpoint. In cellular models, we studied AVE8134 on hypertrophy in rat cardiomyocytes, nitric oxide signaling in human endothelial cells (HUVEC) and LDL-uptake in human MonoMac-6 cells. RESULTS: In post-MI rats, AVE8134 dose-dependently improved cardiac output, myocardial contractility and relaxation and reduced lung and left ventricular weight and fibrosis. In contrast, rosiglitazone exacerbated cardiac dysfunction. Treatment at AVE8134 decreased plasma proBNP and arginine and increased plasma citrulline and urinary NOx/creatinine ratio. In DOCA rats, AVE8134 prevented development of high blood pressure, myocardial hypertrophy and cardiac fibrosis, and ameliorated endothelial dysfunction. Compound treatment increased cardiac protein expression and phosphorylation of eNOS. In old SHR, treatment with a low dose of AVE8134 improved cardiac and vascular function and increased life expectancy without lowering blood pressure. AVE8134 reduced phenylephrine-induced hypertrophy in adult rat cardiomyocytes. In HUVEC, Ser-1177-eNOS phosphorylation but not eNOS expression was increased. In monocytes, AVE8134 increased the expression of CD36 and the macrophage scavenger receptor 1, resulting in enhanced uptake of oxidized LDL. CONCLUSION: The PPARalpha agonist AVE8134 prevents post-MI myocardial hypertrophy, fibrosis and cardiac dysfunction. AVE8134 has beneficial effects against hypertension-induced organ damages, resulting in decreased mortality. The compound exerts its protective properties by a direct effect on cardiomyocyte hypertrophy, but also indirectly via monocyte signaling and increased endothelial NO production.Acta Pharmacologica Sinica (2009) 30: 935-946; doi: 10.1038/aps.2009.58; published online 8 June 2009.


Assuntos
Benzoatos/uso terapêutico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca , Oxazóis/uso terapêutico , PPAR alfa/agonistas , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Benzoatos/química , Benzoatos/metabolismo , Biomarcadores/metabolismo , Cardiotônicos/química , Cardiotônicos/metabolismo , Linhagem Celular , Progressão da Doença , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Estrutura Molecular , Óxido Nítrico Sintase Tipo III/metabolismo , Oxazóis/química , Oxazóis/metabolismo , PPAR alfa/metabolismo , Ramipril/uso terapêutico , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Rosiglitazona , Taxa de Sobrevida , Tiazolidinedionas/uso terapêutico
4.
J Biol Chem ; 277(18): 15647-53, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-11867618

RESUMO

Cytochromes P450 (CYP)-2C enzymes fulfill an important role in xenobiotic metabolism and therefore have extensively been studied in rodents and humans. However, no CYP2C genes have been described in avian species to date. In this paper, we report the cloning, functional analysis, and regulation of chicken CYP2C45. The sequence shares up to 58% amino acid identity with CYP2Cs in other species. The overexpression of CYP2C45 in chicken hepatoma cells leghorn male hepatoma (LMH) led to increased scoparone metabolism. CYP2C45 regulation was studied in LMH cells at the mRNA level and in reporter gene assays using a construct containing 2.6 kb of its 5'-flanking region. Exposure of LMH cells to phenobarbital or metyrapone led to a 95- or 210-fold increase in CYP2C45 mRNA and a 140- or 290-fold increase in reporter gene expression, respectively. A phenobarbital response enhancer unit (PBRU) of 239 bp containing a DR-4 nuclear receptor binding site was identified within the 2.6-kb fragment. Site-specific mutation of the DR-4 revealed the requirement of this motif for CYP2C45 induction by drugs. The chicken xenobiotic receptor CXR interacted with the PBRU in electromobility shift and transactivation assays. Furthermore, the related nuclear receptors, mouse PXR and mouse CAR, transactivated this enhancer element, suggesting evolutionary conservation of nuclear receptor-DNA interactions in CYP2C induction.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Elementos Facilitadores Genéticos , Fenobarbital/farmacologia , Receptores de Droga/fisiologia , Xenobióticos/farmacocinética , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas , Clonagem Molecular , DNA Complementar , Elementos Facilitadores Genéticos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Humanos , Modelos Animais , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...